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Introduction

I The original Harmonic Oscillator Based Effective Theory (HOBET) work by
Haxton and Luu reduced H = T + VNN, with VNN a realistic potential, to Heff in a
small basis defined by projection operator P while correctly including all
scattering by H through an excluded space Q. Scattering by T is analytically
included to all orders, leaving the effective theory (ET) expansion solely focused
on on the short range VNN.

I We embrace energy dependence in the effective interaction as it is key to
accounting for scattering through the excluded Q space. T is tridiagonal in a
harmonic oscillator basis and strongly couples the P and Q subspaces. Much of
the energy dependence of Heff comes from this coupling.

I Results fundamentally do not depend on the choice or size of the included space
defined by P, or on the choice of the harmonic oscillator length scale
b =

√
~/(Mω) with M the nucleon mass. This is because all scattering by H

through the excluded space Q is incorporated into the interaction. This
distinguishes HOBET from other effective theory approaches which take
harmonic oscillator matrix elements of a momentum basis effective theory of the
interaction. The resulting momentum and harmonic oscillator cutoffs overlap,
resulting in uncontrolled error.

I Here we abandon the potential VNN and instead determine the low energy
constants (LECs) of the effective theory expansion from energy eigenvalues and
boundary conditions. In the infinite volume continuum case every energy is an
eigenvalue of H with a boundary condition at infinity corresponding to the phase
shift. One connection to LQCD is that Lüscher’s method can be used to relate
finite volume eigenvalues to infinite volume scattering phase shifts.

Fitting the HOBET LECs to Phase Shifts

The first step is the reorganization of the Bloch-Horowitz equation to separate the
long range kinetic energy contribution from the assumed short range potential.
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Figure: Pieces of the Haxton-Luu form of the Bloch-Horowitz equation.

The Infrared Lee-

Figure: Transform of the end-shell state under three boundary conditions corresponding
to a scattering state, a bound state and the divergent infinite volume state produced by
Lüscher’s formula for an LQCD state. All wave functions are scaled to match at the origin.

Suzuki operator plays a key
role in restoring the long range
behavior of the wave function.
It’s action is limited to end-shell
states which boarder Q.
When acting on the end-shell
states GQT = E/(E −QT )
recovers the long range
behavior of eigenstates of H
through matching the Green’s
function to the phase shifted
wave function at infinity.

To constrain the Green’s function we note that E
E−QT P = E

E−T

{
P E

E−T P
}−1

P, which
makes it clear that constraining G0 = E/(E − T ) to match the boundary condition
will result in GQT also matching it.

V and δV play synergistic roles. In the original sense of the Bloch-Horowitz
equation V would be the full potential and δV would capture the effect of
renormalization, or integrating out the excluded Q space. Since we will be fitting the
expansion of δV to match the energy eigenvalues it can also fit short range parts of
V at the same time. The function we use for V should then match the longer range
behavior of the full potential because that is harder to fit at finite order with the δV
expansion. We use a one pion exchange potential for V with the pion-nucleon
coupling constant determined from the fit.
The δV expansion is written in terms of SHO lowering operators with b̂ lowering the
nodal quantum number and

[
ĉ2
]

2 a rank 2 tensor operator lowering L by 2. dn′,n are
matrix elements of the delta function. We show below an expansion for the S
channel and tensor interaction between S and D.

V S
δ =

∑
n′n

dn′n

[
aS

LO |n
′ 0〉〈n 0| + aS

NLO

{
b̂†|n′ 0〉〈n 0| + |n′ 0〉〈n 0|b̂

}
+ aS,22

NNLO b̂|n′ 0〉〈n 0|b̂

+aS,40
NNLO

{
b̂†2|n′ 0〉〈n 0| + |n′ 0〉〈n 0|b̂2

}
+ aS,42

N3LO

{
b̂†2|n′ 0〉〈n 0|b̂ + b̂†|n′ 0〉〈n 0|b̂2

}
+aS,60

N3LO

{
b̂†3|n′ 0〉〈n 0| + |n′ 0〉〈n 0|b̂3

}]
V SD
δ =

∑
n′n

dn′n

[
aSD

NLO

{[
ĉ†2
]

2 |n
′ 0〉〈n 0| + |n′ 0〉〈n 0|

[
ĉ2]

2

}
+ o(NNLO) + o(N3LO)

]
� [σ1 ⊗ σ2]2

Application to Neutron Proton Scattering : The 3P0 Channel

For testing purposes we use the Argonne v18 potential as a reference to generate phase
shifts and reference wave functions for comparison. For V we use an OPEP with coupling
constant fit in the 1F3 channel. The low energy constants (LECs) of the effective theory
expansion of δV are fit to minimize the sum of squared relative error of the effective
Hamiltonian eigenvalues across the shown sample energies (1 to 80MeV). We use an
included space with an energy cutoff Λ = 8 (4 states) and length scale for the harmonic
oscillator basis of b = 1.7fm.
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Figure: Lepage Plot showing Convergence and Projected v.s. ET Wave Functions at 3 energies in a P space with 4 states.

On the left we see the convergence of the relative energy self consistency error with the
order of the ET theory. On the right the restriction of the full numerical solution to P and the
ET wave functions are nearly identical at N3LO.

The Deuteron Bound State - 3S1/
3D1 Coupled Channel

The deuteron bound state is found with P defined by Λ = 8, containing 5 3S1 and 4 3D1
states. The ET LECs are fit to produce the required self consistent energies across the 1 to
40MeV range.

Order Epionless
bind C2(LECs) Epionful

bind C2(LECs)
bare 3.09525 - -0.76775 -
LO -1.27715 2.2E-2 -2.01110 1.9E-3

NLO -1.95424 1.6E-2 -2.19833 2.2E-6
NNLO -2.17307 6.7E-3 -2.21705 4.0E-8
N3LO -2.23175 1.3E-3 -2.22464 8.4E-9

Table: Deuteron binding energy convergence. In the pionless case we set V = 0 and in the pionful case V = Vπ.

To obtain similar convergence to the binding energy of −2.2245MeV with matrix elements
of Av18 one requires a large basis with Λ > 150.

New: HOBET in a Box - Directly Connecting to LQCD States

HOBET in a Cartesian basis is a good match to LQCD NN eigenstates. Phase shift based
boundary conditions are replaced with periodic boundary conditions and a Cartesian ET
expansion can be rewritten in terms of the spherical LECs!

Cartesian Spherical
c000d000 = a1S0

LO

c200d200 = a1S0
NNLO22 + (2/3) ∗ a1D2

NNLO

c300d120 = a1P1
N3LO22 − (6/10) ∗ a1F3

N3LO

c111d111 = 6 ∗ a1F3
N3LO

Figure: CHO state ~n = 1,2,0 in x,y plane Cartesian LECs expanded in Spherical LECs SHO n=2,P,m=0 in y,z plane.

The non-physical angular momentum state mixing encountered in LQCD work is
sequestered in GQT , which implements the boundary conditions. Once the LECs are fit to
energy eigenvalues, simply swapping boundary conditions produces the infinite volume
angular momentum decomposition of the interaction! This bypasses Lüscher’s method and
we believe that it will much easier to generalize to 3-body interactions.

Conclusions

I We have demonstrated construction of the nuclear effective interaction without the
construction of an intermediate potential from energy eigenstates and boundary
conditions.

I The resulting effective theory faithfully implements integrating out the excluded Q space,
yielding accurate convergence in small P spaces, distinguishing this work from other
approaches.

I A Cartesian version of HOBET with periodic boundary conditions, appropriate for LQCD
NN eigenstates, can be linked to the infinite volume angular momentum channel form,
giving a path to determining properties of nuclei directly from QCD.
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